Losing Trick Count

John Williams April 30, 2013 Lecture

Note: most of this material is from Ron Klinger's excellent book,

The Modern Losing Trick Count

Using *Losing Trick Count* to figure your trick taking potential:

- 1. Count Your Losers.
- 2. Estimate Partner's Losers.
- **3.** Add these together and deduct the total from 24.

The answer is the number of tricks your partnership will probably take, assuming:

- normal breaks and half your finesses working
- at least an 8-card trump fit or a self-sufficient suit (important!)

The answer for your trick potential is estimated to be at least 80 per cent effective. Don't expect the LTC to be accurate if trumps break 5-0 or if every finesse fails. (If you always wear a belt <u>and</u> suspenders, maybe LTC isn't for you.)

Step 1. Count your own losers: Each suit counts 3 losers at most:

3-card or longer suit Count a loser for missing the ace, king or queen.

0 loser suits: AKQ, AKQ4 and AKQ432 each have 0 losers.

1 loser suits: AQ3, AQ32 and AQ7432 each have 1 loser.

2 loser suits: A85, A8532, K43, K863, QJx each have 2 losers.

2 1/2 loser suits: QT3, Q9872

3 loser suits: JT9 or worse.

2-card suit Count a loser for missing the ace or king.

0 loser suit: AK

1 loser suits: Ax, KQ, Kx, AQ (special case – count as only 1/2 a loser)

2 loser suits: QJ and all others with ace and king missing.

1-card suit count as 1 loser except for ace singleton which is no loser.

Void = 0 losers

Examples:

How many losers does each of these hands have?

1. ★AK532 \forall AJ73 \bullet 986 \bigstar K has 1+2+3+1=7 losers

```
2. ♠A73 ♥J73 ♦KQ86 ♣KJT has 2+3+1+2 = 8 losers
3. ♠QJ8432 ♥63 ♦KQJ98 ♣- has 2+2+1+0 = 5 losers
4. ♠8432 ♥KJ3 ♦KQJ9 ♣87 has 3+2+1+2 = 8 losers
```

Step 2. Estimate partner's losers:

Points	Losers	Typical hand	
13-15	7	Min. opening	
16-18	6	Strong notrump	
19-21	5- <u>4</u>	Jump shift	
22-24	4	Forcing opening	
7-9	9-8	Simple raise	
10-12	8	Limit raise	
10+	8-	Forcing response	
12-18	7-6	Takeout double	
8-16	8-6	Overcall	
6-10	8-7	Weak jump overcall	
11-14	7-6	Interm. jump overcall	
16+	6- <u>5</u>	Reverse	
6-8	8	Minimum Weak 2	
8-10	7	Maximum Weak 2	
6-9	9-10	1NT response	
?	7-6(vul)	3 level pre-empt	
?	6-5(vul)	4 level pre-empt	
0-6	<u>10</u> -9	Preemptive raise	
11+	7-	Splinter raise	
_			

The normal expectancy for minimum openings is 13-15 points and 7 losers. As strength increases, there are more tricks so fewer losers. 16-18 points with ordinary shape will usually have 6 losers. As strength decreases, there figure to be fewer tricks. With 10-12 points and no special shape, expect 8 losers.

There are 40 HCP in the deck and 13 tricks, so roughly 3 HCPs = 1 trick. So 13-15 points = 7 losers; 16-18 = 6 losers; and so on according to the following chart relating points, expected losers, and cover cards (cards that are likely to "cover" losers in partners long suited or 2-suited hands.)

Points	Losers	Cover cards	
	expected	expected	
0-6	10-11	0-1	
7-9	9	2	
10-12	8	3	
13-15	7	4	
16-18	6	5	
19-21	5	6	
22-24	4	7	
25-27	3	8	

Step 3. Add these together and deduct the total from 24.

Where does that figure of 24 come from? There are at most 3 losers in each suit, so there are at most 12 losers in your hand; the same is true for your partner's hand. That makes 24.

Why are there at most 3 losers in any suit? Consider:

Suppose you are in a spade contract (remember LTC applies only with a trump fit.) Then the 4th ♠ is good with the probable 3-2 split, and the 4th ♠ is not a loser if partner has 4 or more or if partner has fewer than 4 and can ruff it.

Some examples:

1. Board 2 from the April 21, 2013 Swiss game

you				partner	
★ A9852	2	1♠	2♠	♦ JT4	3
♥ J2	2	4♠		▼ AT863	2
♦ 4	1			* 8653	3
♣ AKQJ9	0			♣ 2	<u>1</u>
	5				9

24 - (5+9) = 10 Bid game.

{only 25% of EW pairs were in 4♠ }

2. Board 12 from the April 21, 2013 Swiss game

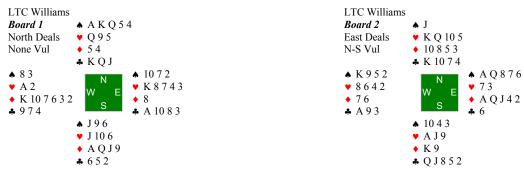
West				East	
★ AQ87	1	1♦	1♠	▲ KJ65	2
♥ A75	2	2♠	Pass	♥ K84	2
♦ KJT3	2			♦ 984	3
♣ 76	2			♣ A94	2
	7				9

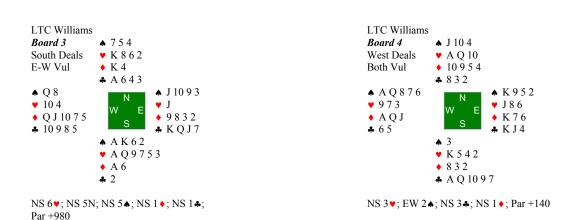
24 - (7+9) = 8 **2** is high enough. If West invites, will East accept with 11 points? {many pairs floundered in 3 or 4 spades}

3. A 24 point cold slam.

you				partner	
★ K86532 ♥ 4 ♦ 72	2 1 2	1 ♠ ?	1 ♦ 4 ♠	♠ AQ74 ♥ J8 ♦ AK943	1 2 1
♣ A943	2 7			♣ K5	<u>1</u> 5

you have 7 losers


partner has ~19 points, or 5 losers


7 + 5 = 12

24 - 12 = 12 tricks are probable. Explore with

4NT since partner opened diamonds.

Note: The lecture will contain many more examples of using LTC to determine when to bid games, stop in part scores, or explore for slam, as well as a discussion of further topics: adjustments to LTC, cover cards, and controls. http://members.shaw.ca/conventions/ltc.pdf has an excellent (39 page) condensation of Klinger's book.

